fMRI

Nasal Airflow Activates Broad Regions of the Olfactory Bulb

Wu_et_al-2017_WTG.JPG

Key Points

  • Nasal breathing information is “encoded” by olfactory sensory neurons in the olfactory bulb

  • Breathing activates broad regions of the olfactory bulb, with the intensity changing as total breathing volume changes

  • The neural activity stimulated by nasal breathing helps explain how breathing can have immediate physiological effects throughout the body

The Breathing Diabetic Summary

The olfactory bulb (OB) and its neurons (olfactory sensory neurons, OSNs) can sense both odors and airflow.  However, previous studies have rarely examined how airflow is actually encoded by the OB and OSNs.  This study used fMRI and local field potential to figure out how airflow activity is mapped in the OB. 

They studied mice under different airflow stimulation (these can be thought of as different breathing patterns because the mechanical stimulation was occurring through their noses).  The different breathing paradigms included changing respiratory rate, changing tidal volume, or changing both rate and tidal volume while keeping the total airflow the same (that is, keeping Rate X Volume = Constant). 

The results showed that airflow stimulation activated broad regions of the OB.  Odor stimulation, on the other hand, had more localized activity maps.  Furthermore, the overall structure of the activity maps was similar regardless of which breathing paradigm was being studied.  Only the intensity of the signal changed with total airflow.  Greater total volume led to more intense activity in the OB. 

Another interesting result was that nasal airflow affected the physiological state of the mice.  Their resting heart and breathing rates slowed, and EEG power declined in specific ranges. 

These results are important because they show for the first time that nasal breathing information is encoded in the olfactory bulb.  We know that breathing can directly influence emotional state, for example, providing a calming effect.  And, there have been several studies showing a direct correlation between breathing, brain activity, memory, and behavior.  Here, we see why.   

Nasal breathing information is imprinted in the OB.  The OB then projects onto the limbic system, which regulates emotions, olfaction, and the autonomic nervous system.  This helps explain the wide-ranging benefits of slow breathing and how breathing can have such immediate effects on our physiological state.

To summarize, this is the first study to show that nasal airflow elicits broad activity maps in the olfactory bulb.  The patterns are robust and change only in intensity when total airflow is altered.  The effects of nasal respiration on the olfactory bulb are then projected on the limbic system, helping explain how breathing can quickly impact physiological state.

Abstract

Olfactory sensory neurons (OSNs) can sense both odorants and airflows. In the olfactory bulb (OB), the coding of odor information has been well studied, but the coding of mechanical stimulation is rarely investigated. Unlike odor-sensing functions of OSNs, the airflow-sensing functions of OSNs are also largely unknown. Here, the activity patterns elicited by mechanical airflow in male rat OBs were mapped using fMRI and correlated with local field potential recordings. In an attempt to reveal possible functions of airflow sensing, the relationship between airflow patterns and physiological parameters was also examined. We found the following: (1) the activity pattern in the OB evoked by airflow in the nasal cavity was more broadly distributed than patterns evoked by odors; (2) the pattern intensity increases with total airflow, while the pattern topography with total airflow remains almost unchanged; and (3) the heart rate, spontaneous respiratory rate, and electroencephalograph power in the β band decreased with regular mechanical airflow in the nasal cavity. The mapping results provide evidence that the signals elicited by mechanical airflow in OSNs are transmitted to the OB, and that the OB has the potential to code and process mechanical information. Our functional data indicate that airflow rhythm in the olfactory system can regulate the physiological and brain states, providing an explanation for the effects of breath control in meditation, yoga, and Taoism practices.

SIGNIFICANCE STATEMENT Presentation of odor information in the olfactory bulb has been well studied, but studies about breathing features are rare. Here, using blood oxygen level-dependent functional MRI for the first time in such an investigation, we explored the global activity patterns in the rat olfactory bulb elicited by airflow in the nasal cavity. We found that the activity pattern elicited by airflow is broadly distributed, with increasing pattern intensity and similar topography under increasing total airflow. Further, heart rate, spontaneous respiratory rate in the lung, and electroencephalograph power in the β band decreased with regular airflow in the nasal cavity. Our study provides further understanding of the airflow map in the olfactory bulb in vivo, and evidence for the possible mechanosensitivity functions of olfactory sensory neurons.

Journal Reference:

Wu R, Liu Y, Wang L, Li B, Xu F.  Activity patterns elicited by airflow in the olfactory bulb and their possible functions.  J Neurosci. 2017;37(44):10700-10711. doi: 10.1523/JNEUROSCI.2210-17.2017.

How slow breathing improves physiological and psychological well-being (hint: it might be in your nose)

Zaccaro_et_al-2018_WTG.JPG

Key Points

  • Slow breathing increases heart rate variability, respiratory sinus arrhythmia, and alpha brain wave activity

  • These physiological changes lead to improved behavioral outcomes

  • The nose links slow breathing to these positive physiological and psychological outcomes

The Breathing Diabetic Summary

I think this paper wins “Best Title Ever” award!

This was a review study that pulled together all of the scientific literature on slow breathing and psychological/behavioral outcomes.  They were trying to answer the following question: What physiological changes are common to all slow breathing studies that have shown improvements in stress and anxiety?

After using some rather rigorous criteria for their literature search, they reduced 158 potential papers down to only 15. 

The physiological outcome parameters they focused on were heart rate variability (HRV), respiratory sinus arrhythmia (RSA), and brain wave activity.  The studies they examined also used several different subjective questionnaires to assess stress, anxiety, depression, and well-being.

As it is with science, there was a lot of nuance and many contradictory findings.  However, several common results did emerge.

First, slow breathing was associated with increases in HRV, particularly in the low frequency (LF) band.  Second, it was associated with increases in RSA.  Finally, slow breathing was associated with increases in alpha brain wave activity (brain waves associated with “flow”) and decreases in theta brain wave activity. 

All of these common physiological changes observed during/after slow breathing were associated with improved psychological and behavioral outcomes.  For example, several studies showed reductions in anxiety, improvements with depression, reduced anger, and increased relaxation.

Thus, slow breathing consistently increases HRV, RSA, and alpha brain wave activity.  These physiological changes then improve psychological and behavioral outcomes.

From a practical perspective, all of the studies used breathing rates of 3-6 breaths/min.  With practice, we can use an app (such as Breathing Zone) to achieve these rates.

Lastly, they examined the importance of the nose.  They reviewed studies showing that nasal breathing has a direct relationship with brain activity, which goes away when the nasal cavity tissue is numbed.  Moreover, certain areas of the brain follow oscillations that match breathing…but only with nasal respiration.  In fact, simply puffing air into the nostrils activates the brain at those “puff” oscillations (independent of actually breathing).

The authors hypothesize that the nose is the link between slow breathing, brain and autonomic functioning, and positive emotional outcomes.

From all of this, we find that slow breathing through the nose at 3-6 breaths/min (Principle 1) has positive effects on HRV, RSA, and brain wave activity.  These benefits then lead to improved psychological and behavioral outcomes.

Abstract

Background: The psycho-physiological changes in brain-body interaction observed in most of meditative and relaxing practices rely on voluntary slowing down of breath frequency. However, the identification of mechanisms linking breath control to its psychophysiological effects is still under debate. This systematic review is aimed at unveiling psychophysiological mechanisms underlying slow breathing techniques (<10 breaths/minute) and their effects on healthy subjects. Methods: A systematic search of MEDLINE and SCOPUS databases, using keywords related to both breathing techniques and to their psychophysiological outcomes, focusing on cardio-respiratory and central nervous system, has been conducted. From a pool of 2,461 abstracts only 15 articles met eligibility criteria and were included in the review. The present systematic review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: The main effects of slow breathing techniques cover autonomic and central nervous systems activities as well as the psychological status. Slow breathing techniques promote autonomic changes increasing Heart Rate Variability and Respiratory Sinus Arrhythmia paralleled by Central Nervous System (CNS) activity modifications. EEG studies show an increase in alpha and a decrease in theta power. Anatomically, the only available fMRI study highlights increased activity in cortical (e.g., prefrontal, motor, and parietal cortices) and subcortical (e.g., pons, thalamus, sub-parabrachial nucleus, periaqueductal gray, and hypothalamus) structures. Psychological/behavioral outputs related to the abovementioned changes are increased comfort, relaxation, pleasantness, vigor and alertness, and reduced symptoms of arousal, anxiety, depression, anger, and confusion. Conclusions: Slow breathing techniques act enhancing autonomic, cerebral and psychological flexibility in a scenario of mutual interactions: we found evidence of links between parasympathetic activity (increased HRV and LF power), CNS activities (increased EEG alpha power and decreased EEG theta power) related to emotional control and psychological well-being in healthy subjects. Our hypothesis considers two different mechanisms for explaining psychophysiological changes induced by voluntary control of slow breathing: one is related to a voluntary regulation of internal bodily states (enteroception), the other is associated to the role of mechanoceptors within the nasal vault in translating slow breathing in a modulation of olfactory bulb activity, which in turn tunes the activity of the entire cortical mantle.

Journal Reference:

Zaccaro A, Piarulli A, Laurino M, et al.  How Breath-Control Can Change Your Life: A Systematic Review on Psycho Physiological Correlates of Slow Breathing.  Front Hum Neurosci.  2018;12:353.